\begin{tabbing} 1. $T$ : Type \\[0ex]2. ${\it T'}$ : Type \\[0ex]3. $E$ : $T$$\rightarrow$$T$$\rightarrow\mathbb{P}$ \\[0ex]4. ${\it E'}$ : ${\it T'}$$\rightarrow$${\it T'}$$\rightarrow\mathbb{P}$ \\[0ex]5. $T$ = ${\it T'}$ \\[0ex]6. $\forall$$x$, $y$:$T$. $E$($x$,$y$) $\Leftarrow\!\Rightarrow$ ${\it E'}$($x$,$y$) \\[0ex]$\vdash$ \=(($\forall$$a$:$T$. $E$($a$,$a$))\+ \\[0ex]\& ($\forall$$a$, $b$:$T$. $E$($a$,$b$) $\Rightarrow$ $E$($b$,$a$)) \\[0ex]\& ($\forall$$a$, $b$, $c$:$T$. $E$($a$,$b$) $\Rightarrow$ $E$($b$,$c$) $\Rightarrow$ $E$($a$,$c$))) \\[0ex]$\Leftarrow\!\Rightarrow$ \=(($\forall$$a$:${\it T'}$. ${\it E'}$($a$,$a$))\+ \\[0ex]\& ($\forall$$a$, $b$:${\it T'}$. ${\it E'}$($a$,$b$) $\Rightarrow$ ${\it E'}$($b$,$a$)) \\[0ex]\& ($\forall$$a$, $b$, $c$:${\it T'}$. ${\it E'}$($a$,$b$) $\Rightarrow$ ${\it E'}$($b$,$c$) $\Rightarrow$ ${\it E'}$($a$,$c$))) \-\- \end{tabbing}